2.1 Resolución de un sistema de ecuaciones algebraicas

•Se plantea resolver el siguiente problema: sistema de n ecuaciones algebraicas con n incógnitas, que puede incluir ecuaciones no lineales, con la siguiente forma general.

$$f_1(x_1,...,x_n)=0$$

$$f_2(x_1,...,x_n)=0$$

•

•

.

$$f_n(x_1,...,x_n)=0$$

Encontrar el vector $(x_1, ..., x_n)$ que hace que todas las ecuaciones sean igual a cero. Matlab tiene una sentencia para resolver esto: fsolve.m. Utilizamos una forma mejorada de este que es **csolve.m**

2.1 Resolución de un sistema de ecuaciones algebraicas

• Sintáxis:

[x,rc]=csolve(nombrefunción')x0, 'gradfun', crit, itmax, p1, p2,...)

Nombre función = es un fichero función que calcula los valores de f_i.

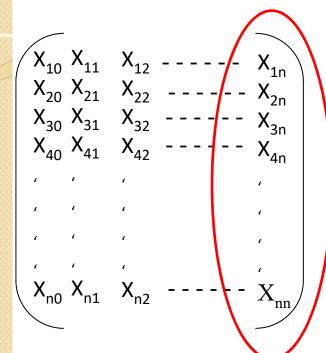
•Sintáxis de 'nombrefunción':

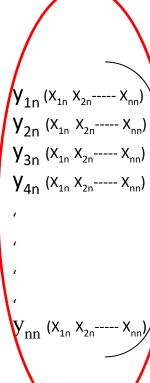
function y=nombrefuncion(x)

$$y(1,:)=f_1(x(1,:), x(2,:),...,x(n,:));$$

$$y(n,:)=f_n(x(1,:),...,x(n,:));$$

La variable x es una matriz con n filas ($n = n^{o}$ de incógnitas) y con un número variable de columnas. Cada columna es una iteración que hace el programa.





Cuando se logre que sustituyendo la columna de valores de x (desde x₁ hasta x_n) la columna de valores de las funciones se aproximen todas a cero, habré llegado a la solución.

2.1 Resolución de un sistema de ecuaciones algebraicas

• x0: es un vector columna con la primera estimación de x $(x_{10},...,x_{n0})$

• 'gradfun': función que calcula el gradiente de 'nombrefunción'. Sirve para acelerar la llegada del comando a la solución del sistema de ecuaciones. No es absolutamente necesario emplearlo (en vez de escribir grandfun, se escribe []).

[x,rc]=csolve('nombrefunción',x0,'gradfun',crit)itmax,p1,p2,...)

• crit: número pequeño positivo que cumple $\sum_{i=1}^{|x|} |y_i| < \text{crit}$ en la solución (y de esta manera se determina que se ha llegado a la solución).

[x,rc]=csolve('nombrefunción',x0,'gradfun',crit.itmax,p1,p2,...)

• itmax: el número máximo de iteraciones permitidas al comando.

[x,rc]=csolve('nombrefunción',x0,'gradfun',crit,itmax,p1,p2,...)

• p1,p2,...: parámetros adicionales que se introducen en esta posición para calcular y₁,...,y_n. (Se pueden introducir con una sentencia global y no sería necesario introducirlos aquí).

2.1 Resolución de un sistema de ecuaciones algebraicas

[xrc]=csolve('nombrefunción',x0,'gradfun',crit,itmax,p1,p2,...)

•rc: indicador del grado de acercamiento a una solución verdadera.

rc = 0, se ha llegado a una solución verdadera

rc = 4, se ha llegado al máximo número de interacciones.

•x: vector columna con la solución del sistema de ecuaciones si rc=0

El cálculo de la matriz [y(1,:); y(2,:);; y(n,:)] es muy complicado cuando las ecuaciones $f_1,, f_n$ son complejas.....

DIFICULTAD EN LAS OPERACIONES ELEMENTO A ELEMENTO.

El cálculo de la matriz [y(1,:); y(2,:);; y(n,:)] es muy complicado cuando las ecuaciones $f_1,, f_n$ son complejas.....

DIFICULTAD EN LAS OPERACIONES ELEMENTO A ELEMENTO.

/	X ₁₀	X ₁₁	X ₁₂	 X_{1n}
		X_{21}		 X_{2n}
	X_{30}	X_{31}	X ₃₂	 X _{3n}
	X_{40}	X_{41}	X_{42}	 X _{4n}
	,	1	,	,
	•	1	•	,
	•	1	•	,
	1	,	,	,
	X_{n0}	X_{n1}	X_{n2}	 X_{nn}
`				

2.1 Resolución de un sistema de ecuaciones algebraicas

• Para facilitar el cálculo de las funciones $f_1, ..., f_n$ a partir de la matriz x(1,:), ..., x(n,:), se extrae cada columna $x_1, ..., x_n$ por separado, y se calcula:

$$y_1 = f_1(x_1,...,x_n)$$

 $y_2 = f_2(x_1,...,x_n)$
 \vdots
 \vdots
 $y_n = f_n(x_1,...,x_n)$

• Construimos la función 'nombrefunción':

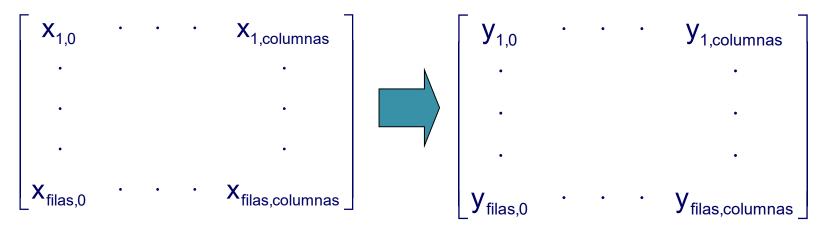
function y=nombrefuncion(x)
filas=size(x,1) %número de filas de la matriz x

columnas=size(x,2) %número de columnas de la matriz x

El comando size(matriz, número) calcula el número de filas de la matriz cuando el número es 1, y el número de columnas cuando es 2.

2.1 Resolución de un sistema de ecuaciones algebraicas

• Se busca calcular una matriz y a partir de una matriz x con la siguiente forma:



• El siguiente paso es extraer una por una cada columna de la matriz x:

```
for j=1:columnas
for i=1:filas
v(i) = x(i,j);
end
```


2.1 Resolución de un sistema de ecuaciones algebraicas

•
$$(v_1,...,v_n)$$
 contiene $(x_1,...,x_n)$ para calcular $(y_1,...,y_n)$

Con este ciclo, el vector $(v_1,...,v_n)$ contiene el conjunto de valores con el que hay que calcular $(y_1,...,y_n)$.

$$y(1,j)=f_1(v(1),...,v(n));$$

•

•

$$y(n,j)=f_n(v(1),...,v(n));$$

%Se ha calculado la columna j de la matriz deseada

end %vuelve a calcular la siguiente columna de y


```
n=lenght(x); %número de ecuaciones (o de incógnitas) x0=ones(1,n) %Suponemos x(1)=1, x(2)=1, .....x(n)=1 x0=x0' %Necesario para csolve
```

```
[x,rc]=csolve('nombrefuncion',x0,[],1e-7,10000)
x %vector solución
rc
```

columnas=size(x,2); for j=1:columnas for i=1:filas v(i)=x(i,j); end

 $y(1,:)=f_1(x(1,:), x(2,:),...,x(n,:));$

function y=nombrefuncion(x)

function.m

filas=size(x,1);

LAS FUNCIONES DE $f(x_1, x_2...x_n)$

$$y(n,:)=f_n(x(1,:),...,x(n,\sqrt{2}))$$
end

2.1 Resolución de un sistema de ecuaciones algebraicas

• Ejemplo: resolver el siguiente sistema de ecuaciones:

```
3 + x_1^2 x_2 + x_2 - 7x_3 = 0
                                          function.m
x_1 - x_3^3 = 0
                                          function y=funcion(x)
\mathbf{x}_2 - \mathbf{x}_3 = \mathbf{0}
                                          filas=size(x,1);
                                          columnas=size(x,2);
                                          for j=1:columnas
                                             for i=1:filas
                                             v(i)=x(i,j);
                                              end
                                          y(1,j)=3+v(1)^2*v(2)+v(2)-7*v(3);
                                          y(2,j)=v(1)-v(3)^3;
                                          y(3,j)=v(2)-v(3);
```

end

2.1 Resolución de un sistema de ecuaciones algebraicas

principal.m

```
n=3; %número de ecuaciones (o de incógnitas)
x0=ones(1,n) %Suponemos x(1)=1, x(2)=1, x(3)=1
x0=x0' %Necesario para csolve
```

```
[x,rc]=csolve('funcion',x0,[],1e-7,10000)
x %vector solución
rc
```


PROGRAMA

```
n=3
x0=ones(1,n)
x0=x0'
[x,rc]=csolve('funcionparacsolve',x0,[],1e-7,10000)
```

FUNCION csolve

FUNCION

```
function y=funcionparacsolve(x)
filas=size(x,1)
columnas=size(x,2)
for j=1:columnas
    for i=1:filas
        v(i)=x(i,j)
    end
    y(1,j)=3+v(1)^2*v(2)+v(2)-7*v(3);
    y(2,j)=v(1)-v(3)^3;
    y(3,j)-v(2)-v(3);
end
```


PROGRAMA

```
n=3

x0=ones(1,n)

x0=x0'

[x,rc]=csolve('funcionparacsolve',x0,[],1e-7,10000)
```

FUNCION csolve

FUNCION

```
function y=funcionparacsolve(x)
filas=size(x,1)
columnas=size(x,2)
for j=1:columnas
    for i=1:filas
        v(i)=x(i,j)
    end
    y(1,j)=3+v(1)^2*v(2)+v(2)-7*v(3);
    y(2,j)=v(1)-v(3)^3;
    y(3,j)-v(2)-v(3);
end
```

